Link Prediction in Multi-modal Social Networks
نویسندگان
چکیده
Online social networks like Facebook recommend new friends to users based on an explicit social network that users build by adding each other as friends. The majority of earlier work in link prediction infers new interactions between users by mainly focusing on a single network type. However, users also form several implicit social networks through their daily interactions like commenting on people’s posts or rating similarly the same products. Prior work primarily exploited both explicit and implicit social networks to tackle the group/item recommendation problem that recommends to users groups to join or items to buy. In this paper, we show that auxiliary information from the useritem network fruitfully combines with the friendship network to enhance friend recommendations. We transform the well-known Katz algorithm to utilize a multi-modal network and provide friend recommendations. We experimentally show that the proposed method is more accurate in recommending friends when compared with two single source path-based algorithms using both synthetic and real data sets.
منابع مشابه
A Link Prediction Method Based on Learning Automata in Social Networks
Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...
متن کاملA unified framework for link and rating prediction in multi-modal social networks
Multi-modal Social Networks (MSNs) allow users to form explicit (by adding new friends in their network) or implicit (by similarly co-rating items) social networks. Previous research work was limited either to the prediction of new relationships among users (i.e. Link Prediction problem) or to the prediction of item ratings (i.e. Rating Prediction problem and Item Recommendations). Recent link ...
متن کاملProviding a Link Prediction Model based on Structural and Homophily Similarity in Social Networks
In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...
متن کاملپیشگویی پیوند در شبکه های اجتماعی با استفاده از ترکیب دسته بندی کننده ها
Abstract Link prediction in social networks is one of the most important activities in analysis of such networks. The importance of link prediction in social networks is due to its dynamic nature. While members and their relationships (links) in such networks are continuously increasing, links may be missed due to various reasons. By predicting such links, the possibility of extension, compl...
متن کاملLatent Space Model for Multi-Modal Social Data
With the emergence of social networking services, researchers enjoy the increasing availability of large-scale heterogenous datasets capturing online user interactions and behaviors. Traditional analysis of techno-social systems data has focused mainly on describing either the dynamics of social interactions, or the attributes and behaviors of the users. However, overwhelming empirical evidence...
متن کامل